Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1162554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125179

RESUMO

The inner ear, the organ of equilibrium and hearing, has an extraordinarily complex and intricate arrangement. It contains highly specialized structures meticulously tailored to permit auditory processing. However, hearing also relies on both peripheral and central pathways responsible for the neuronal transmission of auditory information from the cochlea to the corresponding cortical regions. Understanding the anatomy and physiology of all components forming the auditory system is key to better comprehending the pathophysiology of each disease that causes hearing impairment. In this narrative review, the authors focus on the pathophysiology as well as on cellular and molecular mechanisms that lead to hearing loss in different neonatal infectious diseases. To accomplish this objective, the morphology and function of the main structures responsible for auditory processing and the immune response leading to hearing loss were explored. Altogether, this information permits the proper understanding of each infectious disease discussed.

2.
Eur J Cell Biol ; 101(3): 151252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35779359

RESUMO

The inner ear is composed by tiny and complex structures that, together with peripheral and central auditory pathways, are responsible for hearing processing. However, not only the anatomy of the cochlea, its compartments and related structures are complex. The mechanisms involved in the regulation of homeostasis in the inner ear fluid, which determines the ionic gradient necessary for hearing and balancing sensory excitability, is an intricate phenomenon that involves several molecules. Among them, Aquaporins (AQP) play a significant role in this process. AQP are part of a family of small, integral membrane proteins that regulate different processes, including bidirectional water and ionic flow in the inner ear. Changes in the expression of these proteins are essential to auditory physiology and several pathophysiological processes in the inner ear. This review focuses on the role of AQP in health and disease of the auditory system.


Assuntos
Aquaporinas , Orelha Interna , Aquaporinas/metabolismo , Cóclea/metabolismo , Orelha Interna/metabolismo , Audição/fisiologia
3.
Brain Res Bull ; 187: 111-121, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35772606

RESUMO

Enteric glial cells (EGCs) constitute the majority of the neural population of the enteric nervous system and are found in all layers of the gastrointestinal tract. It is active in enteric functions such as immunomodulation, participating in inflammation and intestinal epithelial barrier (IEB) regulation. Both EGCs and IEB have been described as altered in Parkinson's disease (PD). Using an animal model of PD induced by 6-hydroxydopamine (6-OHDA), we investigated the effect of ongoing neurodegeneration on EGCs and inflammatory response during short periods after model induction. C57Bl/6 male mice were unilaterally injected with 6-OHDA in the striatum. Compared to the control group, 6-OHDA animals showed decreased relative water content in their feces from 1 w after model induction. Moreover, at 1 and 2 w post-induction, groups showed histopathological changes indicative of intestinal inflammation. We identified an increase in IBA1 and GFAP levels in the intestinal mucosa. At an earlier survival of 48 h, we detected an increase in GFAP in the neuromuscular layer, suggesting that it was a primary event for the upregulation of GDNF, TNF-α, and occludin in the intestinal mucosa observed after 1 w. Within 2 w, we identified a decrease in the expression of occludin barrier proteins. Thus, EGCs modulation may be an early enteric signal induced by parkinsonian neurodegeneration, followed by inflammatory and dysmotility signs besides IEB modification.


Assuntos
Sistema Nervoso Entérico , Doença de Parkinson , Animais , Modelos Animais de Doenças , Sistema Nervoso Entérico/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Neuroglia/metabolismo , Ocludina/metabolismo , Oxidopamina/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo
4.
Cancer Cell Int ; 14: 61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25120383

RESUMO

Connective tissue growth factor (CTGF)/CCN family member 2 (CCN2) is a CCN family member of matricellular signaling modulators. It has been shown that CCN2/CTGF mediates cell adhesion, aggregation and migration in a large variety of cell types, including vascular endothelial cells, fibroblasts, epithelial cells, aortic smooth muscle and also pluripotent stem cells. Others matricellular proteins are capable of interacting with CCN2/CTGF to mediate its function. Cell migration is a key feature for tumor cell invasion and metastasis. CCN2/CTGF seems to be a prognostic marker for cancer. In addition, here we intend to discuss recent discoveries and a new strategy to develop therapies against CCN2/CTGF, in order to treat cancer metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...